
Python File I/O
In this article, you'll learn about Python file operations. More specifically,
opening a file, reading from it, writing into it, closing it and various file
methods you should be aware of.

Table of Contents

 What is a file?
 How to open a file?
 How to close a file Using Python?
 How to write to File Using Python?
 How to read files in Python?
 Python File Methods

What is a file?

File is a named location on disk to store related information. It is used to permanently
store data in a non-volatile memory (e.g. hard disk).

Since, random access memory (RAM) is volatile which loses its data when computer
is turned off, we use files for future use of the data.

When we want to read from or write to a file we need to open it first. When we are
done, it needs to be closed, so that resources that are tied with the file are freed.

Hence, in Python, a file operation takes place in the following order.

1. Open a file
2. Read or write (perform operation)
3. Close the file

How to open a file?

Python has a built-in function open() to open a file. This function returns a file object,
also called a handle, as it is used to read or modify the file accordingly.

>>> f = open("test.txt") # open file in current directory

>>> f = open("C:/Python33/README.txt") # specifying full path

https://www.programiz.com/python-programming/file-operation#what
https://www.programiz.com/python-programming/file-operation#open
https://www.programiz.com/python-programming/file-operation#close
https://www.programiz.com/python-programming/file-operation#write
https://www.programiz.com/python-programming/file-operation#read
https://www.programiz.com/python-programming/file-operation#methods

We can specify the mode while opening a file. In mode, we specify whether we want
to read 'r', write 'w' or append 'a' to the file. We also specify if we want to open
the file in text mode or binary mode.

The default is reading in text mode. In this mode, we get strings when reading
from the file.

On the other hand, binary mode returns bytes and this is the mode to be used when
dealing with non-text files like image or exe files.

Python File Modes

Mode Description

'r' Open a file for reading. (default)

'w'
Open a file for writing. Creates a new file if it does not exist or truncates the file

if it exists.

'x' Open a file for exclusive creation. If the file already exists, the operation fails.

'a'
Open for appending at the end of the file without truncating it. Creates a new file

if it does not exist.

't' Open in text mode. (default)

'b' Open in binary mode.

'+' Open a file for updating (reading and writing)

f = open("test.txt") # equivalent to 'r' or 'rt'

f = open("test.txt",'w') # write in text mode

f = open("img.bmp",'r+b') # read and write in binary mode

Unlike other languages, the character 'a' does not imply the number 97 until it is
encoded using ASCII (or other equivalent encodings).

Moreover, the default encoding is platform dependent. In windows, it
is 'cp1252' but 'utf-8' in Linux.

So, we must not also rely on the default encoding or else our code will behave
differently in different platforms.

Hence, when working with files in text mode, it is highly recommended to specify the
encoding type.

f = open("test.txt",mode = 'r',encoding = 'utf-8')

How to close a file Using Python?

When we are done with operations to the file, we need to properly close the file.

Closing a file will free up the resources that were tied with the file and is done using
Python close() method.

Python has a garbage collector to clean up unreferenced objects but, we must not
rely on it to close the file.

f = open("test.txt",encoding = 'utf-8')

perform file operations

f.close()

This method is not entirely safe. If an exception occurs when we are performing
some operation with the file, the code exits without closing the file.

A safer way is to use a try...finally block.

try:

 f = open("test.txt",encoding = 'utf-8')

 # perform file operations

finally:

 f.close()

This way, we are guaranteed that the file is properly closed even if an exception is
raised, causing program flow to stop.

The best way to do this is using the with statement. This ensures that the file is
closed when the block inside with is exited.

We don't need to explicitly call the close() method. It is done internally.

with open("test.txt",encoding = 'utf-8') as f:

 # perform file operations

https://www.programiz.com/python-programming/exception-handling

How to write to File Using Python?

In order to write into a file in Python, we need to open it in write 'w', append 'a' or
exclusive creation 'x' mode.

We need to be careful with the 'w' mode as it will overwrite into the file if it already
exists. All previous data are erased.

Writing a string or sequence of bytes (for binary files) is done using write() method.
This method returns the number of characters written to the file.

with open("test.txt",'w',encoding = 'utf-8') as f:

 f.write("my first file\n")

 f.write("This file\n\n")

 f.write("contains three lines\n")

This program will create a new file named 'test.txt' if it does not exist. If it does
exist, it is overwritten.

We must include the newline characters ourselves to distinguish different lines.

How to read files in Python?

To read a file in Python, we must open the file in reading mode.

There are various methods available for this purpose. We can use
the read(size) method to read in size number of data. If size parameter is not
specified, it reads and returns up to the end of the file.

>>> f = open("test.txt",'r',encoding = 'utf-8')

>>> f.read(4) # read the first 4 data

'This'

>>> f.read(4) # read the next 4 data

' is '

>>> f.read() # read in the rest till end of file

'my first file\nThis file\ncontains three lines\n'

>>> f.read() # further reading returns empty sting

''

We can see that, the read() method returns newline as '\n'. Once the end of file is
reached, we get empty string on further reading.

We can change our current file cursor (position) using the seek() method. Similarly,
the tell() method returns our current position (in number of bytes).

>>> f.tell() # get the current file position

56

>>> f.seek(0) # bring file cursor to initial position

0

>>> print(f.read()) # read the entire file

This is my first file

This file

contains three lines

We can read a file line-by-line using a for loop. This is both efficient and fast.

>>> for line in f:

... print(line, end = '')

...

This is my first file

This file

contains three lines

The lines in file itself has a newline character '\n'.

Moreover, the print() end parameter to avoid two newlines when printing.

Alternately, we can use readline() method to read individual lines of a file. This
method reads a file till the newline, including the newline character.

>>> f.readline()

https://www.programiz.com/python-programming/for-loop

'This is my first file\n'

>>> f.readline()

'This file\n'

>>> f.readline()

'contains three lines\n'

>>> f.readline()

''

Lastly, the readlines() method returns a list of remaining lines of the entire file. All
these reading method return empty values when end of file (EOF) is reached.

>>> f.readlines()

['This is my first file\n', 'This file\n', 'contains three lines\n']

Python File Methods

There are various methods available with the file object. Some of them have been
used in above examples.

Here is the complete list of methods in text mode with a brief description.

Python File Methods

Method Description

close()
Close an open file. It has no effect if the file is already

closed.

detach()
Separate the underlying binary buffer from

the TextIOBaseand return it.

fileno() Return an integer number (file descriptor) of the file.

flush() Flush the write buffer of the file stream.

isatty() Return True if the file stream is interactive.

read(n)
Read atmost n characters form the file. Reads till end of

file if it is negative or None.

readable() Returns True if the file stream can be read from.

readline(n=-1)
Read and return one line from the file. Reads in at

most nbytes if specified.

readlines(n=-1)
Read and return a list of lines from the file. Reads in at

most n bytes/characters if specified.

seek(offset,from=SEEK_SET)
Change the file position to offset bytes, in reference

to from (start, current, end).

seekable() Returns True if the file stream supports random access.

tell() Returns the current file location.

truncate(size=None)
Resize the file stream to size bytes. If size is not

specified, resize to current location.

writable() Returns True if the file stream can be written to.

write(s)
Write string s to the file and return the number of

characters written.

writelines(lines) Write a list of lines to the file.

Python Directory and Files
Management
In this article, you'll learn about file and directory management in Python, i.e. creating a directory,

renaming it, listing all directories and working with them.

If there are a large number of files to handle in your Python program, you can
arrange your code within different directories to make things more manageable.

A directory or folder is a collection of files and sub directories. Python has
the os module, which provides us with many useful methods to work with directories
(and files as well).

https://www.programiz.com/python-programming/file-operation
https://www.programiz.com/python-programming/modules

Get Current Directory

We can get the present working directory using the getcwd() method.

This method returns the current working directory in the form of a string. We can also
use the getcwdb() method to get it as bytes object.

>>> import os

>>> os.getcwd()

'C:\\Program Files\\PyScripter'

>>> os.getcwdb()

b'C:\\Program Files\\PyScripter'

The extra backslash implies escape sequence. The print() function will render this
properly.

>>> print(os.getcwd())

C:\Program Files\PyScripter

Changing Directory

We can change the current working directory using the chdir() method.

The new path that we want to change to must be supplied as a string to this method.
We can use both forward slash (/) or the backward slash (\) to separate path
elements.

It is safer to use escape sequence when using the backward slash.

>>> os.chdir('C:\\Python33')

>>> print(os.getcwd())

C:\Python33

List Directories and Files

All files and sub directories inside a directory can be known using
the listdir() method.

This method takes in a path and returns a list of sub directories and files in that path.
If no path is specified, it returns from the current working directory.

>>> print(os.getcwd())

C:\Python33

>>> os.listdir()

['DLLs',

'Doc',

'include',

'Lib',

'libs',

'LICENSE.txt',

'NEWS.txt',

'python.exe',

'pythonw.exe',

'README.txt',

'Scripts',

'tcl',

'Tools']

>>> os.listdir('G:\\')

['$RECYCLE.BIN',

'Movies',

'Music',

'Photos',

'Series',

'System Volume Information']

Making a New Directory

We can make a new directory using the mkdir() method.

This method takes in the path of the new directory. If the full path is not specified, the
new directory is created in the current working directory.

>>> os.mkdir('test')

>>> os.listdir()

['test']

Renaming a Directory or a File

The rename() method can rename a directory or a file.

The first argument is the old name and the new name must be supplies as the
second argument.

>>> os.listdir()

['test']

>>> os.rename('test','new_one')

>>> os.listdir()

['new_one']

Removing Directory or File

A file can be removed (deleted) using the remove() method.

Similarly, the rmdir() method removes an empty directory.

>>> os.listdir()

['new_one', 'old.txt']

>>> os.remove('old.txt')

>>> os.listdir()

['new_one']

>>> os.rmdir('new_one')

>>> os.listdir()

[]

However, note that rmdir() method can only remove empty directories.

In order to remove a non-empty directory we can use the rmtree() method inside
the shutil module.

>>> os.listdir()

['test']

>>> os.rmdir('test')

Traceback (most recent call last):

...

OSError: [WinError 145] The directory is not empty: 'test'

>>> import shutil

>>> shutil.rmtree('test')

>>> os.listdir()

[]

